skip to main content


Search for: All records

Creators/Authors contains: "Lebrilla, Carlito"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Scope

    The use of human milk products is increasing for high‐risk infants. Human milk contains endogenous enzymes that comprise a dynamic proteolytic system, yet biological properties of these enzymes and their activities in response to variations including pH within infants are unclear. Human milk has a neutral pH around 7, while infant gastric pH varies from 2 to 6 depending on individual conditions. This study is designed to determine the specificity of enzyme–substrate interactions in human milk as a function of pH.

    Methods and results

    Endogenous proteolysis is characterized by incubating freshly expressed human milk at physiologically relevant pH ranging from 2 to 7 without the addition of exogenous enzymes. Results show that the effects of pH on endogenous proteolysis in human milk are protein‐specific. Further, specific interactions between cathepsin D and α‐lactalbumin are confirmed. The endogenous enzyme cathepsin D in human milk cleaves α‐lactalbumin as the milk pH shifts from 7 to 3.

    Conclusions

    This study documents that selective proteolysis activated by pH shift is a mechanism for dynamic interactions between human milk and the infant. Controlled proteolysis can guide the use of human milk products based on individual circumstance.

     
    more » « less
  2. Key points

    Nucleotide binding oligomerization domain (Nod)‐like receptors regulate cognition, anxiety and hypothalamic–pituitary–adrenal axis activation.

    Nod‐like receptors regulate central and peripheral serotonergic biology.

    Nod‐like receptors are important for maintenance of gastrointestinal physiology.

    Intestinal epithelial cell expression of Nod1 receptors regulate behaviour.

    Abstract

    Gut–brain axis signalling is critical for maintaining health and homeostasis. Stressful life events can impact gut–brain signalling, leading to altered mood, cognition and intestinal dysfunction. In the present study, we identified nucleotide binding oligomerization domain (Nod)‐like receptors (NLR), Nod1 and Nod2, as novel regulators for gut–brain signalling. NLR are innate immune pattern recognition receptors expressed in the gut and brain, and are important in the regulation of gastrointestinal physiology. We found that mice deficient in both Nod1 and Nod2 (NodDKO) demonstrate signs of stress‐induced anxiety, cognitive impairment and depression in the context of a hyperactive hypothalamic–pituitary–adrenal axis. These deficits were coupled with impairments in the serotonergic pathway in the brain, decreased hippocampal cell proliferation and immature neurons, as well as reduced neural activation. In addition, NodDKO mice had increased gastrointestinal permeability and altered serotonin signalling in the gut following exposure to acute stress. Administration of the selective serotonin reuptake inhibitor, fluoxetine, abrogated behavioural impairments and restored serotonin signalling. We also identified that intestinal epithelial cell‐specific deletion of Nod1 (VilCre+Nod1f/f), but not Nod2, increased susceptibility to stress‐induced anxiety‐like behaviour and cognitive impairment following exposure to stress. Together, these data suggest that intestinal epithelial NLR are novel modulators of gut–brain communication and may serve as potential novel therapeutic targets for the treatment of gut–brain disorders.

     
    more » « less